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One feature of visual processing in the ventral stream is that cortical
responses gradually depart from the physical aspects of the visual
stimulus and become correlated with perceptual experience. Thus,
unlike early retinotopic areas, the responses in the object-related
lateral occipital complex (LOC) are typically immune to parameter
changes (e.g., contrast, location, etc.) when these do not affect recog-
nition. Here, we use a complementary approach to highlight changes in
brain activity following a shift in the perceptual state (in the absence
of any alteration in the physical image). Specifically, we focus on
LOC and early visual cortex (EVC) and compare their functional mag-
netic resonance imaging (fMRI) responses to degraded object
images, before and after fast perceptual learning that renders initially
unrecognized objects identifiable. Using 3 complementary analyses,
we find that, in LOC, unlike EVC, learned recognition is associated
with a change in the multivoxel response pattern to degraded object
images, such that the response becomes significantly more corre-
lated with that evoked by the intact version of the same image. This
provides further evidence that the coding in LOC reflects the recog-
nition of visual objects.
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Introduction

The hierarchy of visual processing in the visual ventral stream
is evident in the increasing degree of invariance to alterations
of certain features in the image (as long as the object identity is
clearly distinguishable; Grill-Spector et al. 2001; Grill-Spector
and Malach 2004). Thus, while primary visual cortex (V1) is ty-
pically highly sensitive to changes in the location, contrast, or
retinal size of visual stimuli, regions within the lateral occipital
complex (LOC) are largely unaffected by such manipulations
(Grill-Spector et al. 2001; Avidan et al. 2002; Sawamura et al.
2005; Konkle and Oliva 2012, respectively).

Furthermore, the response in LOC is often quite specific to
an object category, such that various stimuli from a given cat-
egory (e.g., teapots) elicit quite similar patterns of response
across voxels, which are distinctly different from those elicited
by images from another category (e.g., chairs; Eger et al.
2008). Importantly, this result is not merely a consequence of a
possible difference in the low-level features (e.g., size) that
may characterize the different object categories. These findings
suggest that LOC activation patterns reflect a perceptual, high-
level representation of visual objects.

Here, we attempt to corroborate these findings by manipu-
lating the observers’ percept while presenting the same phys-
ical stimulus. A similar approach has been utilized before

using various techniques. One classical method has been the
induction of rival percepts, either binocular or monocular,
such that the percept switches between the 2 images seen by
the left and right eye (in the binocular case; Tong et al. 1998;
Haynes and Rees 2005), between 2 interpretations of an ambig-
uous image such as Rubin’s vase–face picture (Hasson et al.
2001; Andrews et al. 2002; Hesselmann et al. 2008) or between
visibility and invisibility of part of a stimulus as a result of sur-
rounding motion (Bonneh et al. 2001). Such studies utilizing
bistable perception linked changes in perception (e.g., the
percept switching between the binocular rivals) to fluctuations
in brain activity in both low- and high-level visual areas (Tong
et al. 2006; Donner et al. 2008; Sterzer et al. 2009). Another
approach was to focus on permanent, long-term perceptual
transitions by means of priming experiments, in which de-
graded or black-and-white Mooney images which were unrec-
ognizable at first were easily identified after exposure to the
original, intact images (Dolan et al. 1997).

These previous studies showed that the average magnitude
of the response in the occipito-temporal cortex is modulated
by the percept. For example, face-selective regions were more
active when the ambiguous image was interpreted as a face
than when the same image was perceived as another object
(Andrews and Schluppeck 2004). More recent studies have
focused on the patterns of functional magnetic resonance imag-
ing (fMRI) activation, showing a correspondence between the
evoked pattern and the specific percept [e.g., the object’s per-
ceived shape (Williams et al. 2007; de Beeck et al. 2008; Hausho-
fer et al. 2008; Drucker and Aguirre 2009) or identity (Hsieh
et al. 2010; Gorlin et al. 2012)]. For example, Hsieh et al. pre-
sented Mooney images to subjects before and after they saw the
intact versions of the images. Thus, they could compare between
the activation patterns when the Mooney images were or were
not recognized with the patterns in response to the intact
images. Surprisingly, they found an effect of recognition in early
visual cortex (EVC; i.e., foveal confluence) and in LOC when the
experiment was block-designed. Using a similar image degra-
dation technique, Gorlin et al. found that primed images are
more accurately decoded in anatomically defined left pericalcar-
ine cortex. However, unlike Hsieh et al., they did not find signifi-
cant priming effects in any functionally defined regions of
interest (ROIs) within the EVC. It is therefore unclear if and how
perceptual changes are reflected by changes in the patterns of
activation in the visual cortex.

Our focus here was to test if changes in the patterns of brain
activation that result from a perceptual shift occur in a predict-
able direction. Specifically, we hypothesized that the activa-
tion patterns would become more similar to the patterns of

© The Author 2014. Published by Oxford University Press. All rights reserved.
For Permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex September 2015;25:2427–2439
doi:10.1093/cercor/bhu042
Advance Access publication March 31, 2014

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/25/9/2427/2926053 by N

ational Institutes of H
ealth Library user on 01 February 2021



response to the intact versions of the same images. To that end,
subjects viewed highly degraded images of objects, before and
after a short learning phase which boosted the participants’
ability to identify those objects. Learned recognition was associ-
ated with a change in the multivoxel response pattern to de-
graded object images, such that the response pattern had
become significantly more correlated with that evoked by the
intact version of the same image. No such changewas evident in
early visual cortical areas. These results further indicate that LOC
reflects the perceptual level of representation of visual objects.

Materials and Methods

Subjects
Fourteen healthy subjects gave their informed consent to participate in
the fMRI study, which was approved by the Helsinki Ethics Committee
of Hadassah Hospital, Jerusalem, Israel. Two subjects were excluded

from further analysis due to excessive movement during the scan, and
an additional subject was excluded due to the absence of sufficient acti-
vation (<50 voxels) during the localizer scan. Thus, the fMRI data from
11 subjects (mean age = 25 ± 3, 3 females) served as the database for
this study.

Stimuli
Four animate and 4 inanimate colored natural images were cropped
and downscaled to 512 × 512 pixels (6.9 × 6.9°; see example in Fig. 1A;
all other images are shown in Fig. 1E). Using a phase scrambling
method, we created images that were degraded to a varying degree by
a linear interpolation between the original image and a noise image
(Rainer and Miller 2000; Rainer et al. 2004): First, we calculated the
average Fourier spectrum of all 8 images. Next, we combined each
image’s Fourier phase with the average spectrum and applied the
inverse Fourier transform to yield Fourier normalized images (see
example image in Fig. 1B). We also combined the average spectrum
with a uniformly distributed random Fourier phase, thus creating the
“noise” image (Fig. 1C). We then linearly combined the noise image

Figure 1. Example of the stimuli used in the experiment. (A) An original intact object image. (B) The same image after Fourier power spectrum normalization. (C) Noise image,
having the same power spectrum as the normalized image (in B), with randomized Fourier phase values. (D) Degraded object image, generated by a linear combination of B and C.
This specific image is shown for illustration purposes only; actual images used in the experiment were more degraded. (E) All 7 other intact images. (F) The location of the 2 ROIs
(LOC colored in blue and EVC in orange) and the 150 most active voxels within each ROI (LOC in purple and EVC in green) projected on the posterior view of the cortical surface, in
one representative subject. (G) Probability maps for LOC ROI (top) and the 150 most active voxels from LOC (bottom) projected on the posterior view of the cortical surface. The
color coding reflects the probability that a specific Talairach voxel was within the LOC ROI (top), or within the top 150 voxels in LOC (bottom).
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with each of the 8 normalized images (see example image in Fig. 1D),
at 36 even-spaced noise levels (from 0.10–0.16 stimulus coherence to
0.22–0.28 coherence, depending on the specific image visibility as-
sessed in a pilot study), thus generating a family of images with a
monotonically increasing signal level. For each subject, we used a
different noise image. These images were used in the 2 runs of the
experiment. In between these runs, we had a short learning procedure.
To assist learning, we generated “Hysteresis clips” displaying a gradual
transformation of the noise image into an intact Fourier normalized
image, and back to the noise. Each of the Hysteresis clips was shown at
15 frames per second and consisted of 120 frames (8 s).

Scrambled images (used in the localizer scan) were created by divid-
ing each image into 8 × 8 pixel squares and randomly scrambling them.

Stimuli were presented using the Presentation software (Neurobe-
havioral Systems, Albany, CA, USA). Visual stimuli were projected via
an MR shielded projector onto a screen located 114 cm from the partici-
pants. The screen was made visible to the subjects via a tilted mirror,
positioned above the subjects’ faces. The screen’s dimensions were 53
cm wide and 30 cm high (26.4° × 15.1°). The display resolution was
1920 × 1080 pixels.

Experimental Procedure
The fMRI experiment consisted of 2 test runs (comprised of degraded
images), in addition to an intact-image run and a functional localizer.
For the first 4 subjects, the scans were in this order, and for the other 7
the intact-image run preceded the second test run. This change in the

protocol was planned in an effort to maximize gains in the recognition
of the degraded images, by exposing participants to the intact version of
the same images. But in fact, post hoc, we found that this change had
little effect on performance. The percentage of recognition reports was
not statistically different between the 2 groups (two-way ANOVA, P =
0.16). During all scans, subjects were instructed to fixate on a central fix-
ation point, which was displayed during the entire experiment.

Immediately prior to the scanning session, subjects were briefly
trained on the recognition of degraded images of man-made objects, to
allow them to be acquainted with the experimental procedure during the
scan. This initial training consisted of 12 degraded images of man-made
objects and food, and 5 null trials, and was repeated until subjects were
sure they understood and felt comfortable with the task. These object
images were not used in the main experiment, and the subjects were not
told about the identity of the objects used in the experiments.

The event-related test runs consisted of image trials and null trials
(Fig. 2A). In each image trial, a degraded image was presented for 200
ms followed by 1800 ms during which the subject had to press one
button if the image was identified and a second button if it was not. In
the null trials, lasting 2 s, no images were presented and no response
was required. Each of the test runs lasted 12:12 min (366 volumes),
consisting of 2 initial noise-image trials, 36 test blocks, and 4 final null
trials. Each block consisted of 10 trials: 8 image trials (of all the animal/
nonanimal images, at a specific coherence level) and 2 null trials, in a
randomized order. The signal level increased monotonically with the
blocks from level 1 (most degraded) to 36 (least degraded), so that
during the last block the images were most easily identified.

Figure 2. Experimental procedure and behavioral results. (A) Experimental procedure: During the event-related fMRI scan, the signal level of all 8 images gradually increased by
incremental steps from level 1 (most degraded) to level 36 (highest signal). Bars schematically represent the time of presentation of different images at 2 adjacent signal levels
(levels 10 and 11 in this specific example). Subjects reported by button press if they did or did not identify each image (empty and filled circles, correspondingly, in the schematic
time course). (B) The mean fraction of identified degraded images in the first and second test runs (averaged across subjects) as a function of the signal level in the image. Shaded
areas denote the standard error of the mean (SEM). Images at different degradation levels are shown below the graph for illustration purposes only; actual images were in color and
more degraded.

Cerebral Cortex September 2015, V 25 N 9 2429

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/25/9/2427/2926053 by N

ational Institutes of H
ealth Library user on 01 February 2021



Next, we had an event-related intact-image run, consisting of 16 rep-
etitions of each of the 8 original, intact images (without Fourier nor-
malization) and the noise image. Each image was presented for 200 ms
followed by 1800 ms of fixation. After adding 64 null trials (2 s with no
image), the order of trials was pseudorandomized using Optseq (http
://freesurfer.net/optseq/). An initial null trial and 4 final null trials
brought the run duration to a total of 7:06 min (213 volumes). In this
run, subjects were instructed to press a button every time the same
intact image was repeated (1-back task).

Before the second test run, subjects viewed a hysteresis video clip
(see Stimuli) of each specific object, 3 times. To avoid misguided learn-
ing of a specific noise pattern associated with the image, each of the 3
hysteresis video clips for a given object was generated with a different
noise image. The second test run was identical to the first, apart from
the intrablock order which was randomized anew.

ROI Selection: Functional Localizer
The final run was a localizer scan, comprised of 7 blocks of intact
images and 7 blocks of the scrambled versions of those images, in an al-
ternating order. Each block consisted of 16 images (8 animate, 8 inani-
mate, including the 8 images used for the main experiment), presented
for 1 s each. An initial blank 2 s, and final blank 8 s brought the scan
time to 3:54 min (117 volumes). As in the “intact images” run, subjects
were instructed to respond by button press whenever a specific image
was repeated (1-back task). We defined 2 ROIs: (1) The object-related,
LOC, using the standard General Linear Model (GLM) contrast [intact
images > scrambled images; q [false detection rate (FDR)] < 0.05; size
range across subjects: 180–1383 functional voxels, mean ± standard
deviation = 636 ± 450] and (2) EVC (which is more responsive to the
added local contrast generated by the image scrambling process), using
the opposite contrast (scrambled images > intact images; q(FDR) < 0.05;
size range: 193–859 voxels, mean = 546 ± 219). The bilateral LOC ROI
was located in the occipito-temporal cortex, and typically included the
fusiform gyrus, occipito-temporal sulcus, inferior temporal gyrus,
inferior temporal sulcus, middle occipital gyrus, lateral occipital sulcus,
and superior occipital gyrus (Malach et al. 1995). The EVC ROI typically
included the calcarine sulcus, occipital pole, and occipital gyri.

To further refine our choice of voxels, and select the same number of
voxels from each subject, we chose a subset of the voxels within the 2
ROIs (LOC, and EVC, see Fig. 1F,G). These voxels were the most respon-
sive [in terms of their signal-to-noise (SNR) ratio] in the intact-image
run. Therefore, the choice of voxels was independent of the activation in
the test runs, avoiding the problem of double dipping (Kriegeskorte
et al. 2009). Specifically, we first averaged the activation t-values (across
the 8 intact object images) of each voxel and then chose the 150 voxels
with the highest mean t-value in each ROI (see further details in the
section Data Processing, below). We present below the results of both
the whole ROI analysis and the 150 voxel analysis.

MRI Scanning Parameters
The blood oxygen level-dependent (BOLD) fMRI measurements were
obtained using a whole-body 3-T Magnetom Trio Siemens scanner and a
32-channel head coil. The functional MRI protocols were based on a
multislice gradient-echo planar imaging and obtained under the follow-
ing parameters: time repetition (TR) = 2 s, time echo = 30 ms, flip angle
= 90°, imaging matrix = 64 × 64, field of view = 192 mm; 36 slices with
3-mm slice thickness and 15% gap (0.45 mm) and were oriented in the
oblique position, covering the whole brain, with functional voxels of 3 ×
3 × 3 mm. In addition, high-resolution, T1-weighted magnetization-
prepared rapid acquisition gradient-echo (MPRAGE) images were ac-
quired (1 × 1 × 1 mm resolution).

Data Processing
Data analysis was conducted using the Brain Voyager QX software
package (Brain Innovation) and in-house analysis tools developed in
Matlab (MathWorks). Preprocessing of functional scans included 3D
motion correction, slice scan time correction, and removal of low fre-
quencies up to 3 cycles per scan (linear trend removal and high-pass fil-
tering). The anatomical and functional images were transformed to the

Talairach coordinate system using trilinear interpolation. The cortical
surface was reconstructed from the high-resolution anatomical images
using standard procedures implemented by the BrainVoyager software.

Voxel time courses were generated using BrainVoyager and were
then analyzed using the Matlab custom-made software. Specifically, we
first transformed each voxel’s time course to obtain a z-score value, by
subtracting the mean activation and dividing by the standard deviation
of the BOLD response across the whole run. Then, for the intact run,
we used a standard GLM analysis with 9 regressors—one for each of
the 8 intact images, and one for the noise image, assuming the stan-
dard (2 gamma) hemodynamic response function (Friston et al. 1998).
This resulted in one activation parameter (beta weight) per regressor,
for each voxel. Next, in each of the 3 analyses of the test runs (detailed
below), we subdivided the experimental conditions into different cat-
egories, thereby obtaining a different number of regressors. To each re-
gressor, we assigned a specific beta weight, based on its activation
level. We then transformed the beta weights into t-values, by subtract-
ing each voxel’s mean beta weight (across all conditions; 9 conditions
in the case of the intact images run) and dividing by each beta’s estima-
tor’s standard deviation.

Mathematically, the transformation is given by (Worsley and Friston
1995):

ti ¼ bi ¼ kblffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðeÞ½ðXTXÞ�1�i;i

q :

where bi is the beta weight for condition i, kbl is the average beta
weight over all conditions, X is the design matrix, XT is its transpose,
the i, i subscript indicates the ith diagonal element, and e is the voxel’s
residual (the difference between the voxel’s actual time course and the
model’s predicted time course). Since the residual generally corre-
sponds to the noise (or unexplained variance) in the measurement, the
t-value reflects the signal-to-noise ratio (SNR) of each voxel.

We then rank-ordered all voxels according to their mean t-value
across images of the intact run and chose the 150 top voxels in each
subject’s ROI. Finally, after selection of the top voxels, we normalized
their t-values, so that when computing the vector of activation for a
given image, each voxel’s contribution was the difference from its
mean t-value across conditions.

Multivoxel Pattern Analysis (MVPA) of Learning-Associated
Changes
MVPA is based on the notion that the representation of each specific
object is distributed, and captured by a unique pattern of activation
across the relevant elements (i.e., voxels, see Fig. 3A; Norman et al.
2006). If this is indeed the case, we posit that recognition of a pre-
viously unrecognized (degraded) image of an object should be mir-
rored by a change in the pattern of responses evoked by that image,
such that this pattern becomes more similar to one evoked by the cor-
responding intact image (see Fig. 3B).

To assess this working hypothesis, we used 3 different analyses (de-
scribed and numbered below) applied to the data acquired during the
test runs. These analyses provided 3 different sets of coefficients (beta
weights), which were then transformed to t-values. After calculating
Pearson’s correlations between the patterns of t-values, the resulting
correlation coefficients (Pearson’s r-values) were converted using
Fisher’s Z transform to z-values, which were then averaged over the 8
images. All t-tests were performed on the mean z-values. Any trial in
which the subject did not respond with a button press was ignored in
all further analyses.

(1) The Image-Presentation analysis: we assessed the degree to which
the multivoxel patterns of activation for the degraded images had
changed between the first and second runs in relation to the multi-
voxel pattern evoked by the corresponding intact images pre-
sented in the intact-image run. To that end, each of the object
images (in each test run) was modeled by one predictor time
course in the GLM, which simply corresponded to the timing of
the 36 presentations of that specific image, in its various signal
levels (Fig. 4A). We then convolved each predictor time course
with a standard hemodynamic response function (HRF; sum of 2
gamma functions; Friston et al. 1998) and applied linear
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regression, to extract the beta weights that best match the raw data.
As a result, in each run, each voxel had one coefficient (beta) per
image, which was then transformed into a t-value, as described
with regard to the intact run. We then calculated the Pearson corre-
lation coefficient between the voxels’ pattern of response (i.e.,
their t-values) to the intact image (in the “intact” run) and their
pattern of response to the degraded image (separately in each of
the 2 test runs). This resulted in 16 correlation coefficients, 8 in
each run, and their mean across images were calculated for each
subject.
Next, we computed the correlation between the multivoxel re-

sponse pattern to each degraded image with the response to the
noise image. This again resulted in 16 correlation coefficients, 8 in
each run.
To compare the resulting correlation coefficients to a benchmark,

we also calculated the correlations between the first run’s response
pattern and the second run’s response pattern for the same images.
As an additional control, we also correlated the pattern of response
to the degraded image with the responses to all 7 other intact
images.

(2) The Image-Identification analysis: Each degraded image (across all
36 degradation levels) was modeled by 2 regressors: one for all the
instances a degraded image was identified, and a second one for the
times it was not identified (Fig. 5A). In addition, we correlated the
voxels’ t-values with their t-values in the intact run, only this time it
was done separately for the “identified image” t-values and for the
“unidentified image” t-values. This analysis enabled us to compare
patterns of activity during trials that were identified and trials that
were not, both before and after the learning phase. However, notice
that the stimuli during identified trials were not the same stimuli as
during the unidentified trials, and the less degraded images (i.e.,
higher stimulus level) were more likely to be identified. In addition,
the number of trials included in the “unidentified” predictors was ty-
pically different from the number of trials in the “identified” predic-
tors, depending on the subjects’ responses, for each image. Both of
these problems do not exist in the third analysis.

(3) The Learned Images analysis: Here, we focused only on the specific
levels of degraded images that were not recognized in the first run
but following learning, had become recognizable in the second run.
Concentrating on this “learned range” (see Fig. 6) enabled us to

compare activity to identical stimuli which elicited different percep-
tual states. For this “image-learning” analysis, each of the 8 degraded
images was modeled by 3 regressors. For the first run, these corre-
sponded to: (i) the degraded image presentations that were not
identified in both the first and second run, (ii) the presentations that
were not identified during the first run but were identified during
the second run, and (iii) those that were identified during the first
run, regardless of their status in the second run (Fig. 6, top). For the
second run, the regressors corresponded to (i) the degraded image
presentations that were not identified in the second run, regardless
of their status in the first run, (ii) the presentations that were not
identified during the first run but were identified during the second
run, and (iii) those that were identified during both runs (Fig. 6,
bottom). We then concentrated on the beta weights of the second (ii)
condition (constituting the learned range), converted them to t-values,
and then calculated the correlations as described previously.

In some rare cases, the predictor time course for a certain subject
and image had no corresponding trials (e.g., if the subject did not
identify any degraded versions of a certain image). In such a case, the
regressor was excluded from all further analysis.

Results

Our main goal in this study was to detect modifications in
brain activity that mirror changes in visual perception follow-
ing fast learning. To that end, subjects viewed highly degraded
images of objects, before and after a short learning phase that
boosted the participants’ ability to identify those objects.

Behavioral Results
In general, during the second run, subjects identified the
object images at an earlier phase (lower signal level) than
during the first run. This improvement was significant (Wilcox-
on signed-rank test, P < 0.05) from signal level 11 and
onwards. Figure 2B depicts the average reported recognition
level (across images and subjects) as a function of the image

Figure 3. Schematic representation of our working hypothesis. (A) MVPA is based on the core idea of a distributed coding: Each specific object is represented by a unique pattern
of activation across the relevant elements (e.g., voxels within a specific ROI). (B) Our assumption is that recognition of a particular visual object (e.g., lion) is reflected by a specific
pattern of activation in LOC. Accordingly, recognition of a previously unrecognized (degraded) image of an object should be mirrored by a change in the pattern of responses evoked
by that image, such that this pattern becomes more correlated with that evoked by the corresponding intact image (depicted by a thicker arrow in the bottom compared with the
top).

Cerebral Cortex September 2015, V 25 N 9 2431

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/25/9/2427/2926053 by N

ational Institutes of H
ealth Library user on 01 February 2021



signal level. While we could not verify that the subjects have
indeed recognized correctly the images during the scan, pilot
studies outside the scanner, in which subjects had to verbally
report the recognized object of other images indicate that
these reports are highly accurate. Overall, behavioral perform-
ance rose with an increasing signal level (e.g., decreasing
degradation levels), although it did not rise monotonically.

fMRI Data
Next, we focus on object-related brain areas in the LOC within
the occipito-temporal cortex. Our working hypothesis was that
if the pattern of response in LOC is related to the perceptual
experience (rather than just to the physical aspects of the
visual stimulus), this should be mirrored by a predicted change
in the pattern of activation, following learning. Specifically, the
activation pattern elicited by a degraded image which becomes
recognizable (following repeated exposure) should become
more similar to one evoked by the corresponding intact image.

To test this at length, we present below 3 complementary
analysis methods: at a coarse level: full first and second run
performance comparison (“image-presentation” analysis); at
an intermediate level: comparison of the patterns in the first
and second run, splitting the data between images that were
recognized, and those that were not (“image-identification”

analysis); and at a fine level: using only instances of the
learned images, which were unidentified in the first run and re-
cognized in the second (“learned image” analysis).

The Image-Presentation Analysis
This analysis compares the patterns of activation elicited for
each image in the first and second run as a whole, regardless of
whether that image was identified by the subject or not. It bears
on the fact that, on average, performance was clearly better in
the second run (as seen by the leftward shift of the performance
function in Fig. 2). Following learning, this should be reflected
in a better correspondence between the multivoxel pattern of
activity evoked by the degraded presentations of an image, to
those evoked by the intact image of the same object.

To that end, for each test run, we modeled each degraded
image, presented at 36 different degradation levels, with one
regressor (Fig. 4A). For every subject, we correlated the multi-
voxel pattern of response in LOC to each degraded image with
the response to the intact image. In each run, Pearson’s corre-
lation coefficients were used to quantify the similarity between
the 2 different patterns of activity evoked by a degraded image
and its corresponding intact image

In the LOC, the active voxels’ response pattern to degraded
images in the second run were indeed significantly more

Figure 4. The image-presentation analysis. (A) Each image (e.g., lion) was modeled by a predictor time course reflecting the timing of the 36 presentations of that specific image
within a test run (see image repetition time axis; note that sequential same image-presentation times can be quite apart from one another; lower time axis, in TR). Predictor time
courses were then convolved with the HRF and linear regression was applied to each voxel’s time course to obtain an activation parameter (beta weight) per image, for each run.
The beta weights were then converted to t-values. Correlations were calculated between the multivoxel t-values for each (degraded) image, and the multivoxel t-values for the intact
versions of the same image and other images. (B) Mean correlation (across images and subjects) between the t-values of LOC voxels’ response to the degraded versions of an
image in a specific run, with the same voxels’ t-values evoked by the intact image (white bar, first run and gray bar, second run), or the intact version of the other object images
(downward diagonal, first run and upward diagonal, second run). The dotted bars represent the correlations between the patterns evoked by the same degraded images in the 2
runs. The left panel describes the results using the top 150 voxels within LOC, while the right panel is the results obtained using the pattern throughout LOC. Statistically significant
effects are denoted by *P<0.05. Error bars here and in all following figures are SEMs. (C) The results of the same analysis, when applied to EVC.

2432 Brain Correlates of Learned Object Recognition • Roth and Zohary

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/25/9/2427/2926053 by N

ational Institutes of H
ealth Library user on 01 February 2021



correlated with the responses to the same intact images, than
when the same comparison was based on the responses during
the first run [see Fig. 4B, left panel. r(first run, intact) = 0.12 ±
0.03; r(second run, intact) = 0.16 ± 0.03; paired t-test: t(10) = 2.52,
P < 0.01], whereas in the EVC, the correlation was significantly
higher for the first run [Fig. 4B, right panel; r(first run, intact) =
0.14 ± 0.02; r(second run, intact) = 0.1 ± 0.02; t(10) = 2.49, P <
0.05]. When using all the voxels in each ROI, the trends remained
visible, but were statistically insignificant in both LOC and EVC.

In both LOC and EVC, correlations with the response to the
noise image were not significantly different between the 2
runs. We also correlated the pattern of response (of the most
responsive voxels) to each degraded image with the patterns to
each of the 7 other intact images. In both runs, this resulted in
significantly reduced correlations than for the matching intact
image, both in LOC and in EVC [LOC: r(first run, other intacts)
=−0.02 ± 0.02; paired t-test comparing to correlation with
matching intact: t(10) = 3.88, P < 0.01; r(second run, other
intacts) =−0.02 ± 0.02; t(10) = 5.78, P < 0.001; EVC: r(first run,
other intacts) =−0.02 ± 0.01; t(10) = 5.74, P < 0.001; r(second
run, other intacts) =−0.01 ± 0.02; t(10) = 3.86, P < 0.01]. Finally,
the mean activation level (beta weights) elicited by the de-
graded images, averaged across voxels and subjects, did not
differ significantly between the runs, in both LOC and EVC. If

anything, the trend was for a lower beta weight in the second
run. Thus, the greater match of the pattern of activation
evoked by the degraded images with that evoked by the corre-
sponding intact image in the second run is not merely due to
an increase in the SNR of the BOLD response, leading to a
more reliable pattern of responses. Rather, it seems to reflect a
subtle change in the pattern itself, such that it becomes (some-
what) similar to that evoked by the intact stimulus.

The Image-Identification Analysis
In this analysis, we divided the 36 different degradation levels
of each image, post hoc, into 2 groups: Those that were ident-
ified and those that were not (Fig. 5A). Then, for each image
(e.g., “lion”), we correlated the response pattern evoked by the
identified degradation levels of that image with the response
to the intact image, and also with the response to the noise
image. The same procedure was repeated, correlating the
pattern of response elicited by the unidentified degradation
levels of that image with the responses to the intact image, and
the noise image. The rationale was that in areas whose activity
is related to the perceptual experience, noisy but identifiable
images should have greater similarity to the intact image (as
both are recognized) than unidentifiable images.

Figure 5. The image-identification analysis. (A) In each test run, 2 time courses were generated per image: one for the degraded images that were identified (empty circles) and
another for those that were not identified (filled circles). Each time course was then convolved with the HRF. Linear regression resulted in 2 beta weights for each image, per voxel,
which were converted to t-values. Correlations were calculated between the pattern of t-values for each image, identified and unidentified, with the t-values for the intact versions.
(B) Mean correlations (across subjects and images) of the pattern of responses to identified and unidentified degraded levels of an image with the response to the same intact
image in LOC (using 150 voxels: left; or the whole ROI: right). Significantly greater similarity to the intact pattern is seen for the identified levels than for the unidentified levels during
the second run (***P<0.001, paired t-test), but not during the first run. (C) The results of the same analysis applied to EVC.
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In the LOC, during the second test run, the average cor-
relation between the identified image response and the
intact-image response was indeed significantly higher than the
correlation between the unidentified image and the intact-
image responses [Fig. 5B, left panel; 150 most responsive
voxels: Pearson’s r(second run unidentified, intact) = 0.05 ±
0.02; r(second run identified, intact) = 0.17 ± 0.02; paired t-test;
t(10) = 5.76, P < 0.001 and whole ROI: r(second run unidenti-
fied, intact) = 0.04 ± 0.02; r(second identified, intact) = 0.15 ±
0.02; t(10) = 5.02, P < 0.001]. This was not the case in the first run
[150 voxels: r(first run unidentified, intact) = 0.07 ± 0.02; r(first
run identified, intact) = 0.10 ± 0.04; t(10) = 1.55, insignificant and
whole ROI: r(first run unidentified, intact) = 0.07 ± 0.01; r(first
run identified, intact) = 0.10 ± 0.03; t(10) = 1.60, insignificant].
One possible reason for this is that exposure to the intact
image, which was presented between the 2 runs, removed the
inherent doubt about the image identity which might have
been prevalent in the first run (see Discussion), leading to a
greater correlation between the noisy representation of the
image and its template (the pattern of activation for the intact
image).

When the same analysis was performed on the data from
EVC, we found an effect in the same direction as LOC that was
significant only when using all the ROI’s voxels, but not when

we chose 150 voxels [Fig. 5B, right panel; 150 voxels: r(second
run unidentified, intact) = 0.00 ± 0.02; r(second run identified,
intact) = 0.09 ± 0.04; t(10) = 2.11, insignificant and whole ROI: r
(second run unidentified, intact) =−0.02 ± 0.02; r(second run
identified, intact) = 0.07 ± 0.03; t(10)= 2.90, P < 0.05]. For the
first test, there was no visible trend [150 voxels: r(first run uni-
dentified, intact) = 0.10 ± 0.03; r(first run identified, intact) =
0.10 ± 0.02; t(10) = 1.54, insignificant and whole ROI: r(first run
unidentified, intact) = 0.08 ± 0.02; r(first run identified, intact)
= 0.07 ± 0.03; t(10) = 0.33, insignificant].

As in the first analysis, the mean beta weights did not signifi-
cantly differ between the identified and unidentified images,
for both runs and both ROIs, whether using the whole ROI or
the 150 most active voxels.

The Learned Image Analysis
The previous image-identification analysis suffers from one
major drawback: Images that are identified typically have a
higher signal level (i.e., are less degraded) than the ones which
are not recognized. Thus, the fact that the activation evoked by
identified images is more correlated with the intact image may
simply stem from a greater physical resemblance between
these categories, compared with the highly degraded versions
of the image (which are not recognized). While this is a logically

Figure 6. The image-perception analysis. Each image had 3 predictor time courses: one for the signal levels that were identified (empty circles) in both tests (top time course of
each run), a second for the levels that were not identified in the first run, but were identified in the second (shaded area, representing the learned range), and a third for those that
were not identified in the second run (bottom time course). Each time course was then convolved with the HRF. Linear regression resulted in 3 beta weights for each image, per
voxel, which were converted to t-values. Correlations between multivoxel patterns were calculated only between the pattern of t-values from the second learned range condition in
each of the 2 runs, and the t-values for the intact-image versions. The other 2 t-values for each image were not used for any further analyses.
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sound argument, the results of the first image-presentation
analysis, in which activation evoked by the stimuli in the second
run was more correlated with the intact images than on the first
run, although they were exactly the same physical stimuli,
strongly argue against this possibility.

Still, to account for this potential confounding effect, in the
third analysis, presentations of each image were split into 3
groups, such that one regressor corresponded to signal levels
that were not identified during the first test run, but following
the learning phase were identified during the second run (see
Fig. 6). Thus, we compared responses to identical stimuli
which were perceived differently. An added value, compared
with the image presentation analysis, is that unlike the pre-
vious analysis, we select only the specific degraded images
that have become recognizable, thereby focusing our analysis
on the direct correlates of fast perceptual learning.

We find, similar to the results of the image-presentation
analysis, that with learning, the pattern of responses in LOC to
the newly recognized images had become more alike the one
evoked by the intact stimuli: The activation patterns of the
second run were significantly more correlated with the intact-
image responses than in the first run [Fig. 7A, left panel; 150
voxels: r(first run, intact) = 0.07 ± 0.03; r(second run, intact) =
0.15 ± 0.02; t(10) = 4.15, P < 0.01], though both are based on
exactly the same images. In contrast, no significant effect of
perceptual state-change was found in EVC for any of the com-
parisons (Fig. 7B).

A complementary view is the correspondence to the pure
noise stimulus: Since the analysis focuses on degraded images
that were uninterpretable in the first run (e.g., viewed as noise)
and have become recognizable in the second run, the corre-
lation of their evoked response with the pure noise image
should decrease in the second run. Indeed, the pattern of
response in LOC to the newly recognized images had become
more dissimilar to that evoked by the noise stimuli: Corre-
lations with the noise image were lower in the second run than
the first run [Fig. 7C, left panel; 150 voxels: r(first run, noise) =
0.00 ± 0.02; r(second run, noise) =−0.05 ± 0.02; t(10) = 3.03,
P = 0.0126]. Similar trends were seen when the voxel represen-
tation was based on the whole LOC ROI, although the effects
were not statistically significant (Fig. 7C, right panel).

As with the previous 2 analyses, the mean beta weights did
not differ significantly between the runs, in both ROIs.

Correlations with the Other Intact Images
It is possible that, following learning, the pattern of activation
in LOC for a given degraded object image has changed in a
nonspecific way, so that it would match any object (but see
Grill-Spector and Kanwisher 2005). This may be the expected
outcome, if the activation pattern in LOC was related to the
general recognition of an object (e.g., “animal”), without
specific knowledge of its exact nature (e.g., “lion”). If this was
indeed the case, the correlation between the response to the
degraded images of that specific object and the responses
evoked by other intact images should also increase following
learning. However, in the chosen voxels from LOC, the average
correlation between the response to the degraded image and
the other intact images was significantly lower in the second
run than in the first run [Fig. 4B, left; r(first run, other intacts)
=−0.015 ± 0.004; r(second run, other intacts) =−0.022 ± 0.003;
t(10) = 2.84, P < 0.05]. Note that this is opposite to the increased

correlation for the matching image. Thus, the possibility that
the pattern of activation in LOC simply reflects nonspecific
object-like quality is ruled out.

Finally, we repeated the analysis separately for the animate
and inanimate image categories, since these 2 distinct cat-
egories have unique neural representations (for a review,
Martin 2007). For both categories, the correlations between the
degraded images and the intact images during the second run
were significantly greater than that with all other intact images
from the same category (animate: 150 voxels and whole LOC:
P < 0.001; inanimate: 150 voxels and whole LOC: P < 0.05), and
in none of the cases was the mean correlation with the other
intacts during the second run significantly greater than during
the first run. Thus, we can conclude that the patterns became
more similar to the specific corresponding intact image and
not to a categorical prototype.

Discussion

Our results suggest that the coding in LOC reflects the percep-
tual level of representation of visual objects, which is strongly
modulated by recognition.

Specifically, in LOC, the first analysis indicated that fast
learning induces higher correlations with the pattern of activity
evoked by the intact stimulus (Fig. 4B). One could posit that
the change results solely from an unrelated change in state
between the first and second run (such as the general arousal
level). However, the results of the second analysis which com-
pared the correlation of identified and unidentified images
within each run rule this out (see Fig. 5B). The third analysis,
which focused on the activation evoked by images in the
learned range, generally repeated the same results as in the
first analysis (namely, greater correlation with the intact
images, for the same degraded images, in the second run, than
in the first run; see Fig. 7A). This effectively eliminates the
concern that the results in the second analysis were solely due
to a difference in the degradation level between recognized
and unrecognized images: Correlations are computed here for
responses evoked by identical degradation levels, before and
after learning. Finally, the third analysis also revealed that, in
LOC, the patterns of activation evoked by images that have
become recognizable in the second run have become less cor-
related with those evoked by the noise image (Fig. 7C). This
mirrors the fact that, following learning, the same images are
interpreted as objects, rather than mere noise as in the first
run.

Do the activation patterns evoked by the degraded images
actually change following learning, to better match the pat-
terns evoked by the matching intact images? A plausible
alternative may be that the pattern of activation across voxels
has actually remained the same, but the average level of acti-
vation has become more pronounced following learning (see
Grill-Spector et al. 2000). Greater overall activation would
translate to a higher SNR, leading to less variance in the
pattern of response across trials. This will ultimately result in
higher correlations with the intact-image response pattern. To
check this, we compared the average activation level (e.g., beta
weights) in the first and second runs (globally, between ident-
ified and unidentified trials of both runs, and between the
learned range of the first and second runs). No consistent trend
could be found in this direction, and none of the comparisons
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yielded a significant change. We conclude that higher acti-
vation levels were not the cause of the higher correlations.

Another explanation could be that the response pattern to
an identified image becomes more similar to a nonspecific
“object” template pattern, rather than to the corresponding
intact image. If indeed, with learning, such a nonspecific
pattern emerges, it should be positively correlated with the
activation evoked by all the intact images, not just the match-
ing one. We tested this possibility by calculating the mean cor-
relation between the pattern elicited by a degraded image and
the patterns elicited by the other 7 intact images. A comparison
between the first and second runs yielded a significant effect in
LOC, but in the opposite direction: the mean correlation to the
other intact images was significantly lower during the second
run than in first run. This was also the case when analysis was
restricted to the learned range (see details in Results section).

Recognition is therefore associated with greater correlation
between the evoked response to the degraded image and its

corresponding intact image. Importantly, it is also associated
with a diminished correlation with the patterns evoked by the
other intact images. This makes perfect sense: If the different
intact patterns are not correlated between themselves (as
indeed is the case, the mean correlation between intact images
was significantly lower than zero; r =−0.12, P < 0.001), a
higher correlation with the match would necessarily lead to
lower correlation with the other intact images.

Finally, classification of the images (“recognized” or not)
was based on the subjects’ subjective binary report (through
button presses). Subjective reports can potentially differ from
some forms of objective behavior (Hesselmann et al. 2011).
But this only strengthens our results, since any mismatch
between the subjective report and the actual image identity
(i.e., false recognition) would be expected to diminish the
observed effect, not accentuate it. Furthermore, in our case,
pilot studies outside the scanner, in which subjects had to verb-
ally report the recognized object, suggest that the subjective

Figure 7. Results of image-perception analysis. (A) Mean correlations in LOC (across subjects and images) for the pattern of responses to the degraded images in the learned
range (see Fig. 6) when identified (second run) and unidentified (first run), with the response to the same intact image (white and gray bars, respectively), with the other intact
images (upward diagonal and downward diagonal bars, respectively), and between the 2 patterns, evoked by the same physical stimuli, in the 2 runs (dotted bar). Left and right
panels are for multivoxel patterns based on the most responsive 150 voxels or all voxels within LOC, respectively. This analysis replicates the results shown in Figure 4A, when using
data only from the learned range of degraded images, despite the weaker statistical power due to the smaller sample size. Note that in this case, the correlation between the
patterns evoked by physically identical stimuli in the 2 runs (dotted bar) is even lower than between very different images of the same object (i.e., highly degraded and intact) that
are recognized as the same object. (B) The same analysis, applied to EVC. No fast learning effect is evident. (C) Mean correlations of the LOC patterns of activation to the learned
range images with the response to the noise image when using 150 voxels (left) and the whole ROI (right). When using the select voxels within LOC, significantly more negative
correlation (*P<0.05) was found in the second run, when these degraded images were recognized compared with the first run when the same images were not recognized. (D)
EVC correlations with the noise image showed no significant difference between the runs.
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response closely matched recognition performance. Still, a
task requiring vocal classification of the degraded images is ob-
viously preferable, if technically possible.

In the image-identification analysis of LOC, the activation
evoked by identified images was significantly more correlated
with that evoked by the intact images, than the unidentified
images. But this was the case only for the second test run. Our
interpretation of this is that since subjects become familiar
with the images during the learning phase, when they identify
an image during the second run, they can retrieve more details
than are actually visible in the degraded image. This results in
a richer perceptual experience than during the first run, which
is mirrored by the greater correlation with the corresponding
intact images in the second run.

In EVC, we found that with regard to the second run, corre-
lations between patterns evoked by the intact images and
those evoked by degraded images were lower for unidentified
images than for identified images (see Fig. 5C). This can be un-
derstood by noting that learning shifts the recognition curve to
the left (see Fig. 2B), so that on average, unidentified images
will be of higher degraded levels in the second run compared
with the first. This will obviously lead to a lower correlation
with the intact object images in run 2 compared with run
1. The same pattern is true for LOC, though to a lesser degree.

What leads to the increased identification rate during the
second run, and what could be the source of the changes in
the brain activation patterns seen in LOC? An initial guess may
be that subjects learned to direct their gaze at the more infor-
mative regions of the images during the second run. But this is
unlikely, since the images were shown for very brief times
(200 ms), effectively barring the possibility for a saccade
during image presentation. We think that the experience
gained during the first run provides the subjects with 3 main
advantages during the second run.

First, subjects may learn where to direct their attention.
Although they do not have enough time to fixate their eyes on
an informative region, they may manage to figuratively “fixate”
their attention on such a region (see Egeth and Yantis 1997).
These regions may be specific for each image, or they could
comprise an area statistically informative over all images. If the
distribution of attention fixations is more similar to the distri-
bution when viewing the intact image, this could result in the
LOC activations becoming more similar too. However, this
possibility seems unlikely, since we would expect patterns in
EVC to change according to such fixations as well and become
more similar to responses to the intact images.

Secondly, after the first run, which clearly revealed the iden-
tity of the images in the experiment, subjects could effectively
narrow their prior expectation from all possible object images
in the world, down to only 8 relevant images. Clearly, this
makes identification a much easier task. Specifically, it has
been suggested that feedback signals from prefrontal cortex
provide possible “interpretations” of presented stimuli to LOC,
thus guiding the bottom-up activity to correspond to reason-
able percepts (Bar et al. 2006; Cheung and Bar 2012). When
the number of possible stimulus interpretations decreases, the
top-down signals should become more specific and precise,
resulting in patterns of activation in LOC that correspond more
strongly to the correct object. In addition, following exposure
to the specific images in the first run, it is plausible that during
the second run, subjects were able to retrieve these images
from memory and imagine them. Mental imagery has been

shown to result in patterns of activation in LOC that are similar
to those present when viewing a stimulus (Stokes et al. 2009;
Reddy et al. 2010; Lee et al. 2012). Some form of implicit
imagery (Albright 2012) could thus explain the higher corre-
lations during the second run.

Thirdly, presentation of the images at high signal (e.g., low
degradation) levels possibly allowed gaining insights into the
way noise interacts with the specific images to obscure their
recognition. By noticing which image-specific contours are
most robust to noise, subjects might have learned to better re-
cognize the image at lower signal levels. This strategy would
have become even more dominant had the order of presen-
tation been reversed (from high signal levels to lower ones),
leading to a hysteresis in recognition performance.

Alternatively (though not necessarily mutually exclusive),
a fourth possibility is that the behavioral change may reflect
low-level neural changes, such as reweighting of specific
connections’ strength from EVC to LOC. Such modifications
in the synaptic weighing could potentially lead to a change
in the firing patterns of the receiving region (LOC) without
concurrent changes in the pattern of activity (at the voxel
scale) in the transmitting region (EVC), as was in our case.
As a result, activation patterns in LOC should become more
similar to intact-image activation patterns, thus enabling
recognition.

If learning is based on a change in bottom-up activity (e.g.,
from earlier visual areas), the activation changes should take
effect in the initial response to the stimuli. On the other hand,
if feedback signals are responsible for the change in the
pattern of activation in LOC, we might expect the initial pattern
of responses (in the first ∼100–150 ms) to remain the same.
The activity pattern should become similar to the intact-image
pattern only when the feedback signals “kick in,” later in time.
Unfortunately, the slow and temporally smoothed BOLD signal
is insufficient to allow differentiation between these 2 temporal
dynamics. Future experiments incorporating methods with
finer temporal resolution (e.g., transcranial magnetic stimu-
lation and magnetoencephalography) may possibly enable us
to better understand the mechanisms by which learning affects
the activation patterns.

How do our results correspond to earlier studies? Using a
masking paradigm with briefly presented object images,
Grill-Spector et al. (2000) trained subjects to identify such
images for several daily sessions. This resulted in higher rec-
ognition performance and significantly higher activation
levels (i.e., beta weights) in LOC, specifically for images that
were initially unrecognized and have become identifiable
with training. In contrast, we did not find higher activation
levels in LOC during the second test run, despite the higher
recognition levels. The cause of this difference between the
results may lie in the extensive 5–7 days of training subjects
underwent in the masking study. In our study, learning was
much faster: a brief 3-min learning phase, in addition to the
first test run, was sufficient to lead to recognition of many
degraded images that were previously unidentifiable. Poss-
ibly, an increase in the average activation levels requires
longer time periods, or greater numbers of repetitions of the
same stimulus. Indeed, in a similar experiment using a
“one-shot” fast learning procedure, Hsieh et al. (2010) found
that there was no significant change in the mean voxel acti-
vation levels following learning, despite a clear behavioral
improvement.
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Similar to our experimental design, Hsieh et al. (2010) had
subjects learn to recognize Mooney figures, following a brief
exposure to their original images. They measured the degree
to which the patterns of activation evoked by the Mooney
figures matched those elicited by the intact images, before and
after learning. Unlike us, they report changes in the activation
patterns elicited by the Mooney figures, such that they better
match the intact images, in early visual cortical areas (but only
in voxels representing the central visual field; i.e., the foveal
confluence). They suggested that these changes reflect a
top-down signal from higher cortical representations (although
they do not report similar changes in LOC during their
event-related fMRI study). One possibility why the 2 studies
show opposite effects may be that Mooney figures have clear
contours, and recognition is mainly hampered by the problem
of scene segmentation (e.g., assigning edges to be part of the
figure or background). Top-down information may be very
useful for this purpose, and indeed in monkeys, the responses
of neurons in early visual areas (V1/V2) are often stronger if a
specific edge is interpreted as being part of the figure, than
when it perceived as part of the background (Lamme 1995;
Zhang and von der Heydt 2010). In our case, some of the con-
tours of the original images are missing from the degraded
images and need to be retrieved from memory—a process
which may depend on the activity of higher level areas. It is
also possible that the different functional definitions of the
early visual areas ROIs (e.g., voxel selection based on a dif-
ferent GLM contrast) may be the cause of the contradictory
findings.

To summarize, using multiple (though not independent) ana-
lyses, we demonstrate here that recognition of previously uni-
dentified visual images is associated with a predicted change in
the pattern of activation in LOC. The change is not in the overall
level of activation but rather in a greater similarity to the pattern
of activation elicited by the matching intact stimulus. Our results
add to a body of previous studies, suggesting that the pattern of
activity in LOC, observed at a coarse scale using fMRI, reflects
perceptual experience (e.g., object recognition) rather than
merely the physical attributes of the stimulus.

Funding

This study was funded by an ELSC/EPFL research (grant
to E.Z.).

Notes

We thank Tanya Orlov, Yuval Porat, and Tal Seidel for helpful
suggestions on earlier drafts of this manuscript. Conflict of In-
terest: None declared.

References
Albright TD. 2012. On the perception of probable things: neural sub-

strates of associative memory, imagery, and perception. Neuron.
74:227–245.

Andrews TJ, Schluppeck D. 2004. Neural responses to Mooney images
reveal a modular representation of faces in human visual cortex.
NeuroImage. 21:91–98.

Andrews TJ, Schluppeck D, Homfray D, Matthews P, Blakemore C.
2002. Activity in the fusiform gyrus predicts conscious perception
of Rubin’s vase–face illusion. NeuroImage. 17:890–901.

Avidan G, Harel M, Hendler T, Ben-Bashat D, Zohary E, Malach R.
2002. Contrast sensitivity in human visual areas and its relationship
to object recognition. J Neurophysiol. 87:3102–3116.

Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Dale AM, Hämä-
läinen M, Marinkovic K, Schacter D, Rosen B. 2006. Top-down facili-
tation of visual recognition. Proc Natl Acad Sci USA. 103:449–454.

Bonneh YS, Cooperman A, Sagi D. 2001. Motion-induced blindness in
normal observers. Nature. 411:798–801.

Cheung OS, Bar M. 2012. Visual prediction and perceptual expertise.
Int J Psychophysiol. 83:156–163.

de Beeck HPO, Torfs K, Wagemans J. 2008. Perceived shape similarity
among unfamiliar objects and the organization of the human object
vision pathway. J Neurosci. 28:10111–10123.

Dolan RJ, Fink GR, Rolls E, Booth M, Holmes A, Frackowiak RSJ,
Friston KJ. 1997. How the brain learns to see objects and faces in an
impoverished context. Nature. 389:596–599.

Donner TH, Sagi D, Bonneh YS, Heeger DJ. 2008. Opposite neural sig-
natures of motion-induced blindness in human dorsal and ventral
visual cortex. J Neurosci. 28:10298–10310.

Drucker DM, Aguirre GK. 2009. Different spatial scales of shape simi-
larity representation in lateral and ventral LOC. Cereb Cortex.
19:2269–2280.

Eger E, Ashburner J, Haynes J-D, Dolan RJ, Rees G. 2008. fMRI activity
patterns in human LOC carry information about object exemplars
within category. J Cogn Neurosci. 20:356–370.

Egeth HE, Yantis S. 1997. Visual attention: control, representation, and
time course. Ann Rev Psychol. 48:269–297.

Friston K, Fletcher P, Josephs O, Holmes A, Rugg M, Turner R. 1998.
Event-related fMRI: characterizing differential responses. Neuro-
Image. 7:30–40.

Gorlin S, Meng M, Sharma J, Sugihara H, Sur M, Sinha P. 2012. Imaging
prior information in the brain. Proc Natl Acad Sci USA. 109:
7935–7940.

Grill-Spector K, Kanwisher N. 2005. Visual recognition: as soon as you
know it is there, you know what it is. Psychol Sci. 16:152–160.

Grill-Spector K, Kourtzi Z, Kanwisher N. 2001. The lateral occipital
complex and its role in object recognition. Vis Res. 41: 1409–1422.

Grill-Spector K, Kushnir T, Hendler T, Malach R. 2000. The dynamics
of object-selective activation correlate with recognition perform-
ance in humans. Nat Neurosci. 3:837–843.

Grill-Spector K, Malach R. 2004. The human visual cortex. Ann Rev
Neurosci. 27:649–677.

Hasson U, Hendler T, Bashat DB, Malach R. 2001. Vase or face? A
neural correlate of shape-selective grouping processes in the
human brain. J Cogn Neurosci. 13:744–753.

Haushofer J, Livingstone MS, Kanwisher N. 2008. Multivariate patterns
in object-selective cortex dissociate perceptual and physical shape
similarity. PLoS Biol. 6:e187.

Haynes JD, Rees G. 2005. Predicting the orientation of invisible stimuli
from activity in human primary visual cortex. Nat Neurosci.
8:686–691.

Hesselmann G, Hebart M, Malach R. 2011. Differential BOLD activity
associated with subjective and objective reports during “blindsight”
in normal observers. J Neurosci. 31:12936–12944.

Hesselmann G, Kell CA, Eger E, Kleinschmidt A. 2008. Spontaneous
local variations in ongoing neural activity bias perceptual decisions.
Proc Natl Acad Sci USA. 105:10984–10989.

Hsieh PJ, Vul E, Kanwisher N. 2010. Recognition alters the spatial
pattern of fMRI activation in early retinotopic cortex. J Neurophy-
siol. 103:1501–1507.

Konkle T, Oliva A. 2012. A real-world size organization of object
responses in occipitotemporal cortex. Neuron. 74:1114–1124.

Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI. 2009. Circular
analysis in systems neuroscience: the dangers of double dipping.
Nat Neurosci. 12:535–540.

Lamme VA. 1995. The neurophysiology of figure-ground segregation
in primary visual cortex. J Neurosci. 15:1605–1615.

Lee S-H, Kravitz DJ, Baker CI. 2012. Disentangling visual imagery and
perception of real-world objects. NeuroImage. 59:4064–4073.

Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA,
Ledden PJ, Brady TJ, Rosen BR, Tootell RB. 1995. Object-related

2438 Brain Correlates of Learned Object Recognition • Roth and Zohary

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/25/9/2427/2926053 by N

ational Institutes of H
ealth Library user on 01 February 2021



activity revealed by functional magnetic resonance imaging in
human occipital cortex. Proc Natl Acad Sci USA. 92:8135–8139.

Martin A. 2007. The representation of object concepts in the brain.
Annu Rev Psychol. 58:25–45.

Norman KA, Polyn SM, Detre GJ, Haxby JV. 2006. Beyond mind-
reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci.
10:424–430.

Rainer G, Lee H, Logothetis NK. 2004. The effect of learning on the
function of monkey extrastriate visual cortex. PLoS Biol. 2:e44

Rainer G, Miller EK. 2000. Effects of visual experience on the represen-
tation of objects in the prefrontal cortex. Neuron. 27:179–189.

Reddy L, Tsuchiya N, Serre T. 2010. Reading the mind’s eye: decoding
category information during mental imagery. NeuroImage.
50:818–825.

Sawamura H, Georgieva S, Vogels R, Vanduffel W, Orban GA. 2005.
Using functional magnetic resonance imaging to assess adaptation
and size invariance of shape processing by humans and monkeys. J
Neurosci. 25:4294–4306.

Sterzer P, Kleinschmidt A, Rees G. 2009. The neural bases of multi-
stable perception. Trends Cogn Scie. 13:310–318.

Stokes M, Thompson R, Cusack R, Duncan J. 2009. Top-down acti-
vation of shape-specific population codes in visual cortex during
mental imagery. J Neurosci. 29:1565–1572.

Tong F, Meng M, Blake R. 2006. Neural bases of binocular rivalry.
Trends Cogn Sci. 10:502–511.

Tong F, Nakayama K, Vaughan JT, Kanwisher N. 1998. Binocular
rivalry and visual awareness in human extrastriate cortex. Neuron.
21:753–759.

Williams MA, Dang S, Kanwisher NG. 2007. Only some spatial patterns
of fMRI response are read out in task performance. Nat Neurosci.
10:685–686.

Worsley KJ, Friston KJ. 1995. Analysis of fMRI time-series revisited—
again. NeuroImage. 2:173–181.

Zhang NR, von der Heydt R. 2010. Analysis of the context integration
mechanisms underlying figure-ground organization in the visual
cortex. J Neurosci. 30:6482–6496.

Cerebral Cortex September 2015, V 25 N 9 2439

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/25/9/2427/2926053 by N

ational Institutes of H
ealth Library user on 01 February 2021



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


