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Position and Identity Information Available in fMRI Patterns
of Activity in Human Visual Cortex

ZviN. Roth'2 and Ehud Zohary'>
Department of Neurobiology, Life Sciences Institute, and 2The Edmond and Lily Safra Center for Brain Sciences, Hebrew University, 91904 Jerusalem,
Israel

Parietal cortex is often implicated in visual processing of actions. Action understanding is essentially abstract, specific to the type or goal
of action, but greatly independent of variations in the perceived position of the action. If certain parietal regions are involved in action
understanding, then we expect them to show these generalization and selectivity properties. However, additional functions of parietal
cortex, such as self-action control, may impose other demands by requiring an accurate representation of the location of graspable
objects. Therefore, the dimensions along which responses are modulated may indicate the functional role of specific parietal regions.
Here, we studied the degree of position invariance and hand/object specificity during viewing of tool-grasping actions. To that end, we
characterize the information available about location, hand, and tool identity in the patterns of fMRI activation in various cortical areas:
early visual cortex, posterior intraparietal sulcus, anterior superior parietal lobule, and the ventral object-specific lateral occipital
complex. Our results suggest a gradient within the human dorsal stream: along the posterior-anterior axis, position information is
gradually lost, whereas hand and tool identity information is enhanced. This may reflect a gradual transformation of visual input from an
initial retinotopic representation in early visual areas to an abstract, position-invariant representation of viewed action in anterior

parietal cortex.
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ignificance Statement

Since the seminal study of Goodale and Milner (1992), there is general agreement that visual processing is largely divided between
a ventral and dorsal stream specializing in object recognition and vision for action, respectively. Here, we address the specific
representation of viewed actions. Specifically, we study the degree of position invariance and hand/object manipulation specificity
in the human visual pathways, characterizing the information available in patterns of fMRI activation during viewing of object-
grasping videos, which appeared in different retinal locations. We find converging evidence for a gradient within the dorsal
stream: along the posterior-anterior axis, position information is gradually lost, whereas hand and action identity information is
enhanced, leading to an abstract, position-invariant representation of viewed action in the anterior parietal cortex.
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Introduction

The functional role of a sensory region in the brain is typically
assessed by identifying the stimulus dimensions for which a
change in specific parameters modulates the neuronal response.
This “tuning” portrays the degree of selectivity to a specific fea-
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ture (e.g., stimulus size or color). Equally important is the com-
plementary aspect, a lack of sensitivity to changes in a specific
parameter, which indicates the degree of invariance to that pa-
rameter. The degree of sensitivity to a specific dimension can be
studied both at the level of a single “unit” (be it a neuron or a
voxel) or at the population (“vector”) level. A generalizing unit
responds to different stimuli varying along a specific parameter at
a constant activity level, whereas a selective unit shows clear vari-
ation in its response. Analogously, a generalizing population re-
sponds with similar patterns of activity (across units) to different
stimuli, whereas selectivity entails a consistently different pattern
of activity for the various stimuli.

The selectivity of single units and their population response
vector to stimuli in the ventral visual pathway has been tested
systematically using univariate and multivariate approaches, re-
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spectively. For example, Rust and Dicarlo
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position in the visual field. Similarly, an
analysis of the multivoxel patterns of ac- 218
tivity evoked by various stimuli has been
used to assess category selectivity in the
human ventral pathway (Haxby et al.,

ple, recent work using multivoxel pattern
analysis (MVPA) revealed that higher-
order visual regions in ventral occipito-
temporal cortex display clear category and
exemplar selectivity while manifesting rel-
ative invariance to changes in the retinal
position in which the stimuli appeared
(Cichy et al., 2013).

The degree of selectivity and general-
ization in the dorsal pathway has generally
been neglected. Valyear et al. (2006)
found, using fMR adaptation, that re-
sponses to still object images in the occip-
itoparietal junction were selective to object orientation but were
invariant to object identity, whereas the opposite pattern of se-
lectivity was found in the lateral occipital complex (LOC). How-
ever, it is still unclear exactly which stimulus properties
determine visual responses in parietal regions. It is also currently
unknown how sensitive parietal regions are to the location of
viewed actions in the visual field. Identity and location sensitivity
should reflect the different functional roles of various parietal
regions. For example, a brain area involved in planning or per-
forming actions is expected to contain information regarding an
object’s location because this information is crucial for perform-
ing an action with that object. If, however, a region is involved in
understanding actions made by others rather than planning one’s
own actions, then accurate localization might not be of impor-
tance. In that case, the region’s activity is more likely to carry
information regarding the object’s identity that is essential for
action understanding. Therefore, revealing the generalization
and selectivity to location and tool identity in parietal regions
should help us to elucidate these areas’ potential functional roles.
To that end, we characterized the information available in the
patterns of activation when viewing object-grasping actions in
various cortical regions.

el

- B’ ‘ left
2001; Kriegeskorte et al., 2008). For exam- : W F 9 E F or
L bbb

Figure 1.

Materials and Methods

Subjects. Fifteen healthy right-handed subjects (four females) gave their
informed consent to participate in the fMRI study, which was approved
by the Helsinki Ethics Committee of Hadassah Hospital, Jerusalem, Is-
rael. One subject was excluded from further analysis due to excessive
head movement (>2 mm) during one of the scans. Therefore, the data
from 14 subjects were used in this study.

Stimuli. Each of six 1800 ms video clips depicting a right hand
grasping and using a tool (hammer, screwdriver, stapler, corkscrew,
garlic press, or knife), was downscaled to 140 X 140 pixels. The
original clips featured a right hand and, by creating mirror-image
clips, six left-hand clips were generated, resulting in a total of 12
different clips (Fig. 1a, bottom).
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Experimental design and eye tracking. a, In each trial, a video clip appeared in one of 49 possible locations while the
subject kept fixation on the central red dot during the entire run. The grid, indicating the 49 locations, was not shown during the
experiment. b, Characteristic still images from each of the 12 clips used. The top six clips show a left hand grasping a tool and the
bottom ones show the identical clips after a mirror image inversion, i.e., the right hand grasping the same tools. ¢, Eye-tracking
results for one representative subject. Top, Eye position traces for the first run. Horizontal position is shown in blue and vertical
position in green. Vertical yellow lines represent the beginning of each trial (excluding null trials). Middle, Close-up on four trials.
Below the graph, grids schematically indicate the location of the stimulus during each trial, stillimages indicate the clip presented
during each trial, and each image is outlined by the color corresponding to the clip location in a. Although the stimulus position
changes across trials, eye position remains successfully fixated.

Experimental design and tasks. Each subject completed 8 runs of the
main experiment and a localizer run across 2 scanning days. During each
run of the main experiment, subjects fixated on a central red square while
viewing video clips at various locations on the screen. Subjects were
instructed to covertly name both the hand (left or right) and the tool in
each clip without moving their eyes. Each session began with a training
period during which subjects first fixated on the clips until they felt
acquainted with them and then practiced keeping central fixation while
paying attention to the clips and covertly naming them. This training
continued until the subjects reported feeling comfortable with the task
and only then did the scanning commence. During each event-related
run of the main experiment, three clips appeared in each of the 49 pos-
sible locations (Fig. 1a, left): eight of the 12 clips appeared 12 times (in 12
different locations) and the other four clips appeared 13 times (in 13
different locations). Across all eight runs, each clip was presented 98
times, twice in each location, and each location hosted 24 clip presenta-
tions with three presentations per run. Each trial lasted 2000 ms [1800 ms
clip duration with 200 ms interstimulus interval (ISI), i.e., 1 TR]. In
addition to 147 clip trials, each run included 49 randomly interspersed
null trials during which no clip was presented and subjects maintained
fixation on the central red square. Four additional null trials at the be-
ginning and at the end of the run brought the total run duration to 6:48
min (204 volumes).

The localizer scan was composed of six blocks of hand, face, animal, tool,
and phase-scrambled images. Each block consisted of 32 images, presented
for 450 ms each with 50 ms ISI. In each block, zero to two images were shown
consecutively and subjects indicated such repetitions by button press (i.e., a
one-back task). Four initial null trials and four final null trials brought the
run duration to a total of 8:16 min (248 volumes).

Eye tracking. During most of the runs, eye movements were recorded
and monitored online via a video-based, infrared eye tracker (Eye
Link1000; SR Research) with a sampling rate of 1000 Hz. This enabled us
to make sure that subjects were fixating the center and were awake and
alert. Unfortunately, due to technical problems, the signal was often
noisy and unstable. Nevertheless, visual examination of the eye position
time courses in the times in which the eye position signal was reliable
revealed that subjects generally complied with instructions and kept cen-
tral fixation (see example time course in Fig. 1c). To confirm that the
stimulus location did not heavily skew the eye position, for each subject,
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Figure 2.

version of the same subject’s brain from a posterior, slightly right-rotated viewpoint.

we averaged the gaze location across all trials during which the stimulus
was presented in each visual field quadrant. The differences between
quadrants were small, both relative to the stimulus size and to the SDs,
and we did not find a consistent trend across subjects.

MRI scanning parameters. The blood oxygenation level dependent
(BOLD) fMRI measurements were obtained using a 3-T Magnetom
Skyra Siemens scanner and a 32-channel head coil. The functional MRI
protocols were based on multislice gradient echoplanar imaging and
obtained under the following parameters: TR = 2 s, TE = 30 ms, flip
angle = 90 degrees, imaging matrix = 64 X 64, FOV = 192 mm; 37 slices
with 3 mm slice thickness and 15% gap (0.45 mm) were oriented in an
oblique position covering the whole brain, with functional voxels of 3 X
3 X 3 mm. In addition, high-resolution T1-weighted magnetization-
prepared rapid acquisition gradient-echo images were acquired (1 X 1 X
1 mm resolution). All scans used GRAPPA parallel imaging (acceleration
factor = 2).

Data processing. Data analysis was conducted using the BrainVoyager
QX software package (Brain Innovation) and in-house analysis tools
developed in MATLAB (The MathWorks). Preprocessing of functional
scans included 3D motion correction, slice scan time correction, and
removal of low frequencies (linear trend removal and high-pass filter-
ing). The anatomical and functional images were transformed to the
Talairach coordinate system using trilinear interpolation. The cortical
surface was reconstructed from the high-resolution anatomical images
using standard procedures implemented with BrainVoyager software.

Voxel time courses were generated using BrainVoyager and analyzed
using MATLAB custom-made software. Specifically, we first trans-
formed each voxel’s time course to obtain a z-score value by subtracting
the mean activation and dividing by the SD of the BOLD response across
the whole run. Next, we used a standard general linear model (GLM)
analysis with a regressor for each condition, assuming the standard (two
gamma) hemodynamic response function (Friston et al., 1998). This

ROIs consisting of the EVC (blue), LOC (green), pIPS (red), and aSPL (purple). Top left, top right, and bottom right
panels present the sagittal, coronal, and transverse views, respectively, in radiological convention (right hemisphere is to the left
of the image) for one representative subject. Bottom left, Same ROIs (depicted in their corresponding colors) shown on an inflated
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resulted in one activation parameter (3-value)
per condition for each voxel. In each of the
identity and location analyses (detailed below),
we subdivided the experimental conditions
into different conditions, thereby obtaining a
different number of regressors or predictors.
To each regressor, we assigned a specific
B-value based on its activation level. We then
transformed the B-values into #-values by sub-
tracting each voxel’s mean 3-value (across all
conditions) and dividing by each B-value’s SD.

ROI selection. Using a functional localizer we
defined four ROIs: early visual cortex (EVC),
LOGC, posterior intraparietal sulcus (pIPS) and
anterior superior parietal lobule (aSPL) (Fig.
2). To obtain two separable ROIs in the parietal
per subject, we used the contrast hands >
scrambled and, starting from FDR < 0.001,
raised the threshold separately for each hemi-
sphere until a cluster of active voxels in the
anterior portion of the parietal cortex was sep-
arated from the pIPS. We then raised the
threshold further (if necessary) until a cluster
of pIPS voxels was separated from occipital ar-
eas and thus defined pIPS. Next, we contrasted
tools > scrambled and, starting from FDR <
0.001, raised the threshold until a ventral-
occipital cluster separated from the parietal re-
gion, and thus selected LOC. Finally, we used
the fact that early visual areas are sensitive to
local contrast that is enhanced in the scrambled
images. Therefore, the opposite contrast
(scrambled > tools) and the same threshold as
for LOC was used to select a cluster of voxels in
the posterior occipital cortex, defined as EVC.

When we performed the analyses separately
on the right and left hemisphere ROIs, the re-
sults across regions remained similar, although
there were small differences between the hemispheres. These differences,
however, were usually consistent across the ROIs (e.g., all left hemisphere
ROIs showed slightly higher tool identity classification results than all
right hemisphere ROIs). Therefore, we report only results from analyses
on bilaterally defined ROIs.

GLM:s. To assess the image-specific characteristics of the studied ROIs,
we performed four different analyses, each with a different set of predic-
tors. This resulted in four different sets of coefficients (B-values) that
were transformed into t-values. For each voxel, the regressors repre-
sented the location (49 coefficients), the hand identity (two coefficients),
the tool identity (six coefficients), or the clip identity (i.e., combined
hand and tool; 12 coefficients).

MVPA. For each of the four analyses, we used two methods of MVPA:
correlation analysis and support vector machine (SVM) classification. Al-
though these two methods probe slightly different aspects of the multivoxel
patterns, we expected their results to largely correspond to each other (We-
ber et al., 2009; Golomb and Kanwisher, 2012).

For the correlation analysis, the eight runs were split into two (“even”
and “odd”) groups of four runs each and, for each group, the runs’ time
courses were concatenated. We then performed the GLM regression and
normalized each voxel’s t-values by subtracting the mean across condi-
tions for that voxel (Haxby et al., 2001; Garrido et al., 2013; Roth and
Zohary, 2014; repeating all correlation method analyses without this
normalization yielded similar results). This resulted in two sets of
t-values, one for each half of the runs (Fig. 3a). Correlating all of the
patterns of activation (one pattern for each condition) in half of the runs
with all of the patterns in the other half results in a correlation matrix of
size p X p, where p is the number of conditions. Subtracting the mean
overall correlations between different conditions from the mean overall
correlations between identical conditions gives a measure of the stimulus
information carried by the patterns. To minimize the effects of random
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Figure3. Location analysis: correlation method. a, In MVPA, each condition is represented by a vector of activation levels across

voxels within a specific ROI. For the correlation method, we computed the correlation between the vectors of every condition in one
half of the runs (e.g., “even” runs) with the vectors of every condition in the other half (e.g., “odd” runs). b, Location correlation
matrix. Left, The 49 locations are numbered in the order in which they appear in the correlation matrices. Right, The correlat-
ion matrix of EVC, averaged across all subjects’ (V = 14) individual matrices. Note that the correlations are greater along the main
diagonal (same position) and the parallel lines that reflect the nearest neighbors in terms of stimulus positions. ¢, Top, Location
correlation matrices for each ROI, averaged across all subjects’ individual matrices. Bottom, Location correlation maps for each ROI.
The correlation map is created by reordering a single row (#32 in this example) or column from the correlation matrix into a smaller
7 X 7 matrix that reflects the correlation between the pattern evoked by a stimulus in each position, with the activity evoked by
a stimulus in position #32. It explicitly depicts the dependence of the correlation on the spatial position of the stimuli.
The correlation becomes less dependent on the exact position of the stimuli from EVC to aSPL, reflecting the increasing size of the
receptive fields in parietal cortex. d, We measured the information of an ROI by averaging the diagonal (correlations between the
patterns of activity evoked by stimuli at the same location) and subtracting the average of all off-diagonal values (correlations
between the patterns of activity evoked by stimuli at different locations). e, Results of the location analysis using the correlation
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differences between the two groups of runs, we
repeated this analysis 12 times, each time split-
ting the runs into different groups. The corre-
lation values were then averaged across splits.
To test for statistically significant differences
between same-condition correlations and
different-condition correlations, mean corre-
lation values (across 12 splits and across condi-
tions) for each subject were transformed to
Fisher z-scores, and ¢ tests were performed on
the difference in z-scores between different
conditions and identical conditions (ANOVA
revealed a significant effect of ROI for all anal-
yses and both MVPA methods). To test for sig-
nificant differences between regions, paired ¢
tests were performed on the Fisher z-scores of
three pairs of regions: LOC and pIPS, LOC and
aSPL, and pIPS and aSPL. To avoid clutter, in
all graphs, we present only the results for the
pIPS versus aSPL t test comparison. These
p-values were corrected for three comparisons.

For the classification analysis, the GLM regres-
sion was performed separately for each run and
the resulting f-values were normalized to the
range of [0, 1]. Binary classification SVMs were
trained on the data from seven runs and tested on
the final run in a leave-one-run-out cross-
validation method using LIBSVM (Chang and
Lin, 2011). Whereas the hand identity analysis
involved an obvious classification of each trial as
either a left-hand or right-hand clip, the binary
classification for the other analyses was less obvi-
ous because there are multiple possible ways to
divide the conditions into two equal-sized
groups. We therefore used several classifications
for each analysis, eventually averaging the results.
For the tool and clip identity analyses, we used all
possible classifications (10 and 462, respectively),
whereas for the location analysis, we used 128
random classifications (similar results were ob-
tained using 256 and 512 random classifications).
For the location classification analysis, to have an
even number of locations, we ignored the central
location, leaving 48 locations to be classified. In
addition to the random splits, we trained classifi-
ers on more orderly splits of the locations, which
were nonrandomly chosen to demand varying
levels of fine-scale discrimination between loca-
tions (Fig. 4d). We used ¢ tests to determine
whether accuracies were significantly greater
than chance and paired ¢ tests to test for signifi-
cant differences between regions’ accuracies (as
for the correlation method: LOC and pIPS, LOC
and aSPL, and pIPS and aSPL).

Generalization across hemifields. If patterns
of activation contain stimulus information
thatislocation independent, then patterns cor-
responding to certain stimuli occurring in one-
half of the visual field should be highly similar
to patterns corresponding to the same stimuli
in the other half of the visual field. To deter-
mine whether such location invariance is char-

<«

method. Scale bar values and error bar values here and in sub-
sequent figures represent the mean across subjects = SEM.
*p < 0.05; **p < 0.01; ***p < 0.001; ns: p > 0.05, cor-
rected for three comparisons.
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Figure4. Location analysis: classification method. a, Eight examples of random location classifications. The 48 locations (the

center location is left out of this analysis) are randomly divided into two equal-sized groups, which are defined as the two classes
to be classified by the SVM. b, Classification method. Each location is represented by a vector of voxel activation levels; that is, a
vector of length N/, where N equals the number of voxels in the ROI. In the schematic example, the ROI consists of only 2 voxels, and
each location is represented by a vector of length 2. The circles represent locations from the training data from both classes (blue
and white). The SVM finds a straight line (or an N-1 hyperplane in the general case of N voxels) that separates the two classes and
isthen tested onlocations from the testing data, represented by triangles. In this example, the classifier is correctin 5/6 cases of the
testing data (the line correctly classifies 5 of the triangles), resulting in a score of 0.83. ¢, Results of the random classifications
analysis. d, All 20 nonrandom classification, grouped into 5 resolution levels, from the category demanding the lowest resolution
(#1) to the highest (#5). e, Results of the nonrandom dlassifications analysis, averaged across subjects. f, Nonrandom classification
results grouped by resolution category. Top, Classification accuracy for each ROl and resolution category. Bottom, p-values of t tests
for each ROl and resolution category. Patterns of activity in aSPL contain enough location information to correctly classify the first
two resolution categories.

acteristic of our ROIs, we divided the 49 location into three groups: left
visual field (LVF), vertical meridian, and right visual field (RVF). We
ignored all trials located in the vertical meridian and performed MVPA
across the two hemifield. For the correlation analysis, we correlated pat-
terns from LVF with patterns from RVF and vice versa (see Fig. 7a),
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whereas for the classification analysis, we
trained SVMs to differentiate between condi-
tions (e.g., right hand vs left hand) in the LVF
and tested them on the RVF (and vice versa).

Generalization across hands. We performed a
similar generalization analysis to test for tool
identity information that is independent of hand
identity. To that end, we split each voxel’s 12
t-values (corresponding to each of the video
clips), which were computed for the clip identity
analysis according to the acting hand in the clip
(resulting in six left-hand #-values and six right-
hand t-values). For the correlation method, we
correlated the multivoxel patterns evoked by
right-hand clips with the left-hand patterns and
vice versa (see Fig. 8a) and then subtracted the
mean off-diagonal values (“different”) from the
mean on-diagonal values (“same”). For the clas-
sification method, we trained SVMs to differen-
tiate between the six clips of tools being
manipulated by the left hand and tested them on
the six right-hand clips for every one of the 10
classifications. The same procedure was done for
the opposite direction (training with right hand,
testing with the left-hand clips). The results were
averaged across the various classifications and
trained hand.

Searchlight analysis. As a complementary
analysis and to verify that our ROIs captured
the regions with relevant information, we per-
formed a searchlight analysis (Kriegeskorte et
al., 2006), performing the correlation analysis
using cubes of voxels instead of the predefined
ROIs. Specifically, we used cubes measuring
5X5X5and7 X 7 X 7 voxels (15 X 15 X 15
and 21 X 21 X 21 mm?, respectively) and used
every possible cube of contiguous voxels. As
with the ROI-based correlation analysis, we
split the runs in 12 different ways and created a
correlation matrix for each split. We then aver-
aged the matrices across splits and subtracted
the Fisher-transformed mean correlation be-
tween different conditions (off-diagonal) from
the Fisher-transformed mean correlation be-
tween identical conditions (the diagonal of the
correlation matrix) for each subject. Perform-
ing t tests on the difference values left us with a
t-value for each searchlight center voxel. Re-
sults for both sizes of the searchlight cubes were
similar, so we present only results for the
smaller cube.

Results

We studied the patterns of activity
evoked by various dynamic visual stim-
uli in select regions of the dorsal and
ventral pathways: EVC, parietal areas
pIPS and aSPL, and the ventral object-
specific constellation LOC. Our partici-
pants viewed video clips depicting a
hand grasping various tools and using
them in their characteristic way at 49
different screen (and retinotopic) loca-

tions (Fig. la). This allowed us to obtain a comprehensive
measure of the available information about the visual stimulus
structure and its location in the visual field. We used two
forms of MVPA, correlation analysis and pattern classification
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Both correlation and classification
methods show that EVC is most sensitive  Figure 5.  Identity analyses results. Left and right graphs depict results of the correlation and classification methods,
to stimulus position, whereas aSPL is the respectively. a, Hand identity analyses. Top, Trials were divided into two conditions (right hand, left hand), resulting in two
coefficients for each voxel. b, Tool identity analyses. Top, Trials were divided into six conditions (for the six different tools),
resulting in six coefficients for each voxel. ¢, Clip identity analyses. Top, Trials were divided into 12 conditions (for all 12
different combinations of hand and tool), resulting in 12 coefficients for each voxel.

least sensitive and is largely position in-
variant (Figs. 3e, 4¢). Indeed, results from
both methods reveal that aSPL localiza-
tion performance is significantly lower
than both pIPS and LOC (p < 0.0001 for
both methods), although aSPL still con-
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tains some position information (i.e.,
above random performance; p < 0.001 for
both methods). Note that the relatively
low amount of positional information us-
ing the SVM technique is probably di-
rectly related to the random assignment of
stimulus location to one of the two classes.
Two neighboring locations are often as-
signed to different classes, requiring dis-
crimination between adjacent locations,
which may be beyond the capabilities of
the voxel population of aIPS (see Fig. 4a
for examples of classifications). In other
words, aSPL may indeed carry location in-
formation, but at a coarser scale than we
tested so far. To test this hypothesis, we
tested performance in 20 ordered classifi-
cations at five different spatial scales (Fig.
4d). Generally, across ROIs, the pattern of
results (Fig. 4e) was similar to the one
obtained using a random assignment clas-
sification (Fig. 4¢). Furthermore, this analy-
sis revealed that aSPL carries location
information primarily for coarse-scale clas-
sifications (Fig. 4e): decoding accuracy was
significantly higher than chance only for the
coarsest and second-most-coarse groups of
classifications (uncorrected for multiple
comparisons; Fig. 4f).

In sum, the patterns of activation to
viewed action in LOC are position depen-
dent, although they are much less so than
in EVC. This has been noted before in
studies using object stimuli (Sayres and
Grill-Spector, 2008; Kravitz et al., 2010;
Cichy et al., 2013). Here, using many dif-
ferent locations coupled with MVPA, we
have been able to give a more detailed account
of the different spatial scales at which those re-
gions code stimulus location.

Next, we analyzed the different pat-
terns evoked by the various action clips
seen in order to understand what action-
specific information is available in the
ROIs. Specifically, we wanted to know
what degree of information is present re-
garding hand identity, tool identity, and
the combination of both (i.e., clip iden-
tity) regardless of the position of the clip
on the screen.

Hand identity analysis

Trials were tagged according to which
hand (left or right) appeared in each clip
regardless of clip location, resulting in
two t-values (i.e., activation coefficients
for the right and left hand clips, respec-
tively) per voxel in each run (Fig. 5a,
top). We then tested in each ROI how
well patterns of activity can differentiate
between clips showing right versus left
hand action (grasping a tool) regardless
of the location of the clip on the screen
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or the specific tool being grasped. Both
MVPA methods reached similar results,
showing lower performance in LOC
than both aSPL and pIPS (correlation
method: #,3) > 6, p < 0.0001; classifica-
tion: t(,3) > 3, p < 0.05; Fig. 5a, bot-
tom). Clips of the grasping action
performed by the left versus right hand
usually differ in the overall position of
the hand and therefore may have very
different local contrast. However, be-
cause in our case each hand clip was
seen in all 49 locations, retinal-specific
EVC showed no information regarding
which hand was active in each clip. The
above results, showing clear selectivity
to hand identity in the parietal cortex,
agree with a previous study finding
hand selectivity in aSPL based on the
average activation level (Shmuelof and
Zohary, 2006).

Tool identity analysis

Trials were tagged according to the tool
that appeared in each specific clip. This
resulted in six tool-specific activation lev-
els (t-values) per voxel in each run (Fig.
5b, top). In this analysis, we tested how
well the activation patterns can differenti-
ate between clips depicting a hand grasp-
ing different tools regardless of the clip
location and the grasping hand (left or
right). LOC showed the highest level of
tool specific information, with IPS regions
carrying moderate amounts. EVC carries
no tool information (across locations).
Both MVPA methods reached similar re-
sults (Fig. 5b, bottom). The results of this
analysis are similar to the previous (hand)
analysis in that higher-order regions con-
tain more information about the clip spe-
cifics than low-level EVC. Note, however,
that although LOC contained signifi-
cantly lower hand information than both
dorsal regions, it showed the highest level
of tool information (although this was not
significantly different from aSPL).

Clip identity analysis

Trials were tagged according to the spe-
cific combination of tool and hand iden-
tity that appeared in each clip, resulting in
12 t-values per voxel in each run (Fig. 5¢,
top). The results based on the correlation
method are very similar to those obtained
in the hand identity analysis: namely, clip
information in LOC is significantly lower
than in both parietal regions (pIPS: 5y =
2.76,aSPL: £, 5, = 3.06, p < 0.05 for both).
The classification method, however,
yielded results that better match the result
of the tool analysis (i.e., high accuracy in
LOGC; Fig. 5¢, bottom). We discuss the
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Figure7. Generalization of identity information across locations. a, For the generalization analyses using the correlation
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identity results, respectively. Left, Correlation method. Right, Classification method. Location invariant representations in
aSPL generalize well across hemifields.



Roth and Zohary e Position and Identity Coding in Human Visual Cortex

a

Activation
level for
voxel i (

Tm‘ﬂ 0

Wﬁu

Left Hand
Activation
level for
tool i

Qtﬂ@@@

Right Hand

J. Neurosci., August 19, 2015 - 35(33):11559-11571 « 11567

image category across all locations in one
hemifield and tested the degree to which
they matched the patterns of activation
for the same stimulus across all locations
in the opposite hemifield (Fig. 7a). Specif-
ically, we correlated the patterns corre-
sponding to different stimulus identities
presented in the LVF with the patterns
corresponding to the same stimuli when
presented in the RVF and vice versa (Fig.
7b—d, left). We also performed a classifica-
tion analysis in which we trained SVMs to

Activation classify the images based on the data from

] | the LVF and tested classification capabil-

\ ‘ level for
|

tool j ity of the same images when presented at

the RVF, and vice versa (Fig. 7b—d, right).

As expected, aSPL showed the highest de-
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of hand identity.

possible reasons for this slight divergence later (end of Results
section).

Searchlight analysis

The results so far are based on ROI analysis. However, although
this analysis enabled us to focus on ROIs that are relevant to
location and identity information, we may have missed other
relevant regions that were not activated during the independent
functional localizer. We therefore performed a whole-brain
searchlight analysis using the correlation method to verify our
ROI analysis and to determine whether we missed any additional
important brain regions. The searchlight analysis results corre-
spond well to the ROI analyses and did not reveal any additional
loci carrying information about the hand, tool, or clip identity
beyond our choice of ROIs (Fig. 6b).

Generalization capabilities

The results so far show that parietal regions contain stimulus
identity information across different locations. However, it is of
interest whether and to what degree this information is indepen-
dent of position in the visual field (Rust and Dicarlo, 2010). We
hypothesized that areas showing low discriminability for location
(such as aSPL) are likely to show the same pattern of activity
regardless of the position of the specific image in the visual field.
In other words, they would display generalization capabilities. To
test this hypothesis, we assessed the patterns of activation for each

THI e i

* %
I
o -'

LOC pIPS aSPL

Generalization of tool identity information across hands. a, To test for generalization of tool identity across hands, we
correlated patterns of response to tools grasped by the left hand (top row; green squares) with patterns of response to tools grasped
by the right hand (orange squares). For the classification method, we analogously trained the classifier on data from left-hand clips
and tested it on the right-hand clips (and vice versa). b, Left, Correlation method results. Right, Classification method results. Both
methods yielded results similar to the tool identity analysis (Fig. 5b), suggesting that sensitivity to tool identity was independent

gree of generalization across visual fields
for all three identity categories. Therefore,
action representations in aSPL are largely
invariant to location. Note that although
pIPS exhibits identity discriminability
across locations (Fig. 5) on par with aSPL,
it displays significantly lower generaliz-
ability of identity information (Fig. 7).
This probably reflects the higher sensitiv-
ity to location in pIPS compared with
aSPL.

Analogously, we investigated whether
the tool information evident in LOC,
pIPS, and aSPL was dependent on the
identity of the manipulating hand. Specif-
ically, given the high level of hand identity
information in the two parietal regions
and the dominance of hand information
in their correlation matrices, we won-
dered whether these regions carried any
hand-independent tool identity information. To test this, we
compared the patterns of activity elicited by viewing tools manip-
ulated by one hand with patterns of activity for the same tools
when manipulated by the other hand (collapsed across all loca-
tions; Fig. 8a). The pattern of results across ROIs (Fig. 8b) was
very similar to the original tool identity analysis (in which the
data were collapsed across both hands; cf. Fig. 5b). This indicates
that tool identity information is not driven primarily by the hand
similarity between identical clips (i.e., same hand and same tool),
but rather by information regarding the tool identity per se (see
Discussion).

Comparing correlation and classification analysis

Correlation and classification methods are two different forms of
MVPA. Both assess the information available in the patterns of
activity of voxel populations, but they focus on somewhat differ-
ent aspects in the patterns. The classification method handles the
data on a single-trial basis, testing the classification on each trial
separately. Conversely, the correlation method ignores individ-
ual trial variability by pooling across trials in an effort to derive a
more reliable assessment of the activation level per condition
(e.g., a single coefficient for each condition in each half of the
data). Second, and more important, the two methods differ in the
weights assigned to each voxel in the pattern. Whereas for com-
puting correlations all voxels are weighted equally, classification
with SVM is based on assigning different weights to specific vox-
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numbered as in Figure 5¢. Notice that, in pIPS and alPS, the matrix structure is dominated by
hand identity (clips 1—6 vs clips 7-12), whereas in LOG, the structure is dominated by tool
identity. b, Schematic matrices illustrating extreme cases of complete tool identity information
with no hand identity information (left) or complete hand identity information with no tool
identity information (right). Notice in a that the correlation matrix in LOCis more similar to the
left matrixin b and, in IPS regions, the matrix is more similar to the right matrix. ¢, lllustration of
the effect of perfect hand or tool identity information on classification accuracy. In contrast to
the correlation method, tool identity has a stronger effect on classification accuracy than does
hand identity. Whereas perfect hand identity information leaves us with six possibilities (bot-
tom left), perfect tool identity information limits us to only two possibilities (bottom right).

Tool-identity

els according to their usefulness in classification. Therefore, even
if only a few voxels within a specific ROI (typically containing
hundreds of voxels) show some differential selectivity to images
from the two classes to be differentiated, a successful SVM clas-
sifier will assign large weights to those voxels and manage to
classify well, whereas the correlation method will not be success-
ful because of the dominance of uninformative voxels that con-
tribute noise, thereby masking the similarity (e.g., correlation)
between images of the same category. Despite these differences,
the two methods generally yielded similar results. The relative
performance per analysis showed a similar pattern (i.e., rank or-
der) across regions for the two methods (Figs. 5a,b, 7b,c). How-
ever, in our clip analysis (which takes into account both hand and
tool identity; Fig. 5¢), the results of the two methods differed: the
rank order of the correlation results (between ROIs) was similar
to those obtained in the hand analysis (larger amount of infor-
mation in parietal regions, smaller in LOC; Fig. 5a), whereas the
classification results were similar to the ones in the tool analysis
(greater information in LOC and aSPL compared with pIPS; Fig.
5b). This may be a consequence of the larger number of tool
analysis conditions (six) relative to the hand analysis conditions
(two), the specific combinations of which determine the clip
identity conditions (12), combined with the higher correlation
information in the hand analysis relative to the tool analysis (cf.
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values in Fig. 5b,¢). As a result, hand identity dominates the cor-
relation values in the clip identity analysis (this is vividly seen in
the correlation matrices in Fig. 9a). Indeed, the correlation results
across ROIs in the clip identity analysis match closely the hand
identity results. Conversely, because reliable classification re-
quires accurate separation between the representations of all 12
clips, the larger number of tool conditions means that tool iden-
tity information should dominate classification accuracy over
hand identity information. To illustrate this, if a multiclass clas-
sifier (i.e., classifies each clip as one of 12 options) is able to
determine perfectly which tool is grasped in the clip, it will have
50% accuracy (where the chance level is 1 of 12, or 8.3%), having
to guess only the hand identity. In contrast, if the classifier knows
only the hand identity, it will have to guess the tool (out of six
options), resulting in 16.6% accuracy (Fig. 9¢). In other words,
given our specific configuration of stimuli, tool identity should
have a higher impact on clip identity classification than hand
identity. It therefore makes perfect sense that, when using the
correlation method, the clip identity results resemble the hand
identity results, whereas with the classification method, the clip
analysis results are more similar to the tool analysis.

Relationship between information and tool action
representation in visual cortex

We have shown that there is potential information regarding the
position and identity of tool manipulation clips in the patterns of
activation in various regions of the visual cortex. For example, the
patterns in both LOC and aSPL allow reliable decoding of tool
identity. Does this imply that there are similarities between the
representations of viewed actions in the ventral and dorsal visual
streams in terms of their mean level and/or distribution of BOLD
activation to the different stimulus conditions? To address this,
we calculated, for each ROI, the mean t-values for all the relevant
conditions and also a few examples of the multivoxel activation
patterns for various stimulus locations. The results are shown in
Figure 10. Within each ROI, the differences between activation
levels across conditions were minute and do not provide enough
information to differentiate between various conditions. In LOC,
pIPS, and alPS, the mean t-values were positive for both identity
and location analysis (Fig. 104, top and bottom, respectively). In
EVC, the mean t-values were mostly negative, except for the most
central positions, which were positive. This can also be seen at the
single-voxel level (Fig. 10b). The negative values in EVC for the
identity analysis (hand, tool, or clip) were a result of presenting
stimuli in peripheral locations in the majority of cases. Voxels in
EVC have center-surround pRFs and the size of the excitatory
center pRF is small relative to the eccentricities used in our
study (Zuiderbaan et al., 2012). For most voxels, the stimu-
lated location is usually outside the positive region of the pRF
and they therefore either have no BOLD response (i.e., a
t-value ~0) or have a negative response when the stimulus is
located in their negative surround region. In any case, previ-
ous MVPA studies have assumed that potential information
corresponds to “representation” regardless of whether the
BOLD responses of individual voxels were positive or nega-
tive. The standard has been to use a normalized measure of the
voxel’s activation [e.g., the difference in activation level from
the mean level of activation across all stimuli (Haxby et al.,
2001) or t-value, scaling this difference by the voxel’s variation
in the null period (Kriegeskorte et al., (2008) as the voxel’s
contribution to the pattern vector]. Clearly, to prove the exis-
tence of a neural representation, it would be necessary to show
a causal link to perception; that is, to create a certain pattern of
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quite different from one another (e.g., cf. first row with third row).

activity (e.g., by mean of optogenetics or focused stimulation)
and show that it causes a specific perception.

Discussion

Summary of results

We characterized the information available in the patterns of
fMRI activation when viewing object-grasping actions in various
cortical regions. Our results suggest that in a functional gradient
within the dorsal visual stream along the posterior—anterior axis,
position information is gradually lost, whereas hand and tool

identity information is maintained. This may reflect a transfor-
mation of visual input from a highly specific retinotopic repre-
sentation in early visual areas to an abstract, position invariant
representation of viewed actions in the aSPL.

Limitations of our experimental design

We found that the patterns of activation carry tool identity infor-
mation in several cortical regions. However, the variation in the
patterns elicited by the various tools may be due to different
causes. One possibility is that, because different tools are grabbed
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in diverse ways, they may evoke various tool affordances; how-
ever, the hand generalization analysis suggests that this is not a
primary factor because clips with opposite hand identity are
somewhat different in their affordances (in terms of the angle at
which the tool is grasped). Another possibility is that the typical
use (e.g., manipulation) varies considerably between the tools
used in the current experiment. We cannot tease apart these two
possible sources of discriminating information in the current
study. It is obviously also possible that the information in some
regions may reflect tool identity per se. Similarly, areas that con-
tain information about hand identity may actually encode hand
motion direction because the right-hand clips always depict mo-
tion in the leftward direction and vice versa.

Another issue is the degree to which the information is rele-
vant to the task at hand. Task requirements may shape the sensi-
tivity to the specific parameters of the stimuli (e.g., location and
identity). In the current task, subjects were asked to name co-
vertly the identity of the clips regardless of their location. In-
structing subjects to direct their attention to the position of the
stimulus on the screen while ignoring its identity may change the
activation patterns, possibly resulting in greater location infor-
mation and a lower degree of identity information across the
various ROIs.

Finally, because activity in the parietal cortex is known to be
modulated by attention, it is likely that the location information
that we found in the parietal cortex reflects not only the stimulus
location, but also the location to which the subject attended.

Relevance to previous MVPA studies

In recent years, several studies have used MVPA to assess the
information available regarding the identity of viewed actions in
various areas of the dorsal stream. Dinstein et al. (2008) pre-
sented subjects with clips of hand actions and found that the
action identity (“rock,” “paper,” or “scissors”) can be reliably
assessed (i.e., above chance level) from the pattern of BOLD ac-
tivity in anterior IPS, which partially overlaps our aSPL ROI.
However, a much better decoding accuracy was found in EVC,
suggesting that differences in low-level visual features (e.g., vari-
ations in the retinal image) are likely to be a major factor deter-
mining the decoding level. More recently, Ogawa and Inui (2011)
had subjects view static images of hand—object interactions. Ap-
plying SVMs to the patterns of responses evoked by each image in
various ROIs, they attempted to classify each image according to
specific properties. Decoding accuracy in alPS was above chance
for action type, object identity, and hand “side.” However, be-
cause all stimuli were shown at fixation, most classifications were
confounded by low-level differences and, indeed, decoding accu-
racy remained high when using vectors of stimuli pixelwise lumi-
nance values. Nevertheless, their final analysis, which involved
decoding the action type while generalizing across two other
properties, yielded significant results in aIPS and premotor cor-
tex, but not in EVC. This result presumably reflects coding of
high-level visual action features rather than low-level visual
features.

Our results are consistent with these previous studies and ex-
tend them by showing that the information in anterior parietal
cortex is not limited to low-level retinotopic differences (as veri-
fied by low decoding accuracy of stimulus identity in EVC), but
rather contains high-level information regarding action proper-
ties (i.e., identity of the hand and tool involved in grasping).

Similarly, Wurm and Lingnau (2015) have shown recently
that activation patterns in the inferior parietal lobule (IPL, adja-
cent to aSPL) and lateral occipitotemporal cortex (LOTC, a re-
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gion in LOC) enable decoding the viewed action (i.e., opening or
closing) across different action kinematics (i.e., twisting or pull-
ing/pushing) and object categories (i.e., bottle or jar). Con-
versely, EVC does not show significant decoding, indicating that
the generalization properties in IPL and LOTC do not rely on
low-level features.

Similarities between ventral and dorsal stream
representations

One interesting aspect of our study is that there are some simi-
larities between the representations of viewed actions in the ven-
tral and dorsal visual streams. This has also been noted in past
studies. For example, using fMRI repetition suppression, Konen
and Kastner (2008) showed that LOC and pIPS regions (IPS1 and
IPS2) both represent objects in a view- and size-invariant man-
ner. Using surface-based searchlight MVPA, Oosterhof et al.
(2010) found that, in both LOC and a region approximately cor-
responding to aSPL, observed and executed actions have similar
vector representations. Bracci and Peelen (2013) found that, in
both IPS and left LOTC, representations of tool images reflect the
degree to which they serve as extensions of the body or hand.
These fMRI findings, as well as recent functional (Mahon et al.,
2013) and anatomical (Takemura et al., 2015) connectivity stud-
ies, indicate that, although the two streams may have different
functional preferences (Goodale and Milner, 1992; Shmuelof and
Zohary, 2005), significant communication channels exist be-
tween ventral and dorsal visual regions.

Ventral gradient of location and identity information

A large number of studies has uncovered a posterior—anterior
gradient along the ventral stream in which low-level visual input
is transformed into high-level object representations (Grill-
Spector and Malach, 2004). For example, it has been shown that
LOC is less sensitive than EVC to the contrast level in an image
(Avidan etal., 2002) and also shows a large degree of invariance to
changes in position or retinal size while at the same time being
viewpoint selective (Grill-Spector et al., 1999). Our results are
consistent with this ventral gradient, showing that representa-
tions in LOC are less dependent on stimulus location than the
posterior EVC and reflect aspects such as tool identity.

Dorsal gradient of location and identity information

It has been suggested that a visual-somatic (Blangero et al., 2009)
or a visual-motor (Stark and Zohary, 2008) gradient exists along
the anterior—posterior axis of the dorsal stream (see Heed et al.,
2011 for a similar eye—hand motor gradient). Specifically, during
action execution (such as grasping or reaching), posterior regions
in the IPS are more involved in processing relevant visual aspects
(such as target position), whereas anterior regions are more in-
volved in encoding of the motor aspects (i.e., identity of the hand
performing the action). The same gross division can also be seen
here for purely visual tasks. Our results show that location infor-
mation is gradually lost along the posterior—anterior axis, thus
extending our previous results (Porat et al., 2011), whereas rep-
resentations become increasingly sensitive to tool and hand iden-
tity even when no action is performed by the observer.

Abstract representations in the ventral and dorsal streams

We have shown that there are commonalities in the representa-
tion of viewed actions in LOC and parietal cortex: both show
clear feature generalization compared with EVC. This raises the
question regarding the division of labor between the dorsal and
ventral streams. We found that the representation in LOC was
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still largely location dependent, whereas aSPL showed a location-
invariant activation pattern. Furthermore, LOC carried less hand
identity information (across all locations) than aSPL. These re-
sults may be interpreted as reflecting a more abstract representa-
tion in the dorsal stream than in the ventral. However, it is
possible that the representations that we have identified do not
reflect the final word of either stream and that more anterior
regions may host more abstract representations. Such hypothet-
ical abstract representation may generalize across tools and
hands, showing instead selectivity to the action, such as “cutting,”
“throwing,” or “grasping.” Because all of the clips that we used
depict grasping, such an area would not differentiate between the
different clips, instead generalizing across the different tools and
hands. Consistent with the ventral stream abstraction gradient
discussed above, the anterior temporal lobe (ATL) may be a rea-
sonable candidate for hosting a highly abstract representation
because it has been suggested that a gradient of conceptual infor-
mation in the ventral stream culminates in ATL, where activity
patterns reflect the actions associated with certain tools (e.g.,
kitchen vs garage tools; Peelen and Caramazza, 2012).

One way to investigate the “goal” of each stream is by studying
the stimulus representations and transformations taking place
along each stream. Here, we analyzed the representations with
regard to stimulus position and stimulus identity. Future studies
may incorporate a similar approach with regard to additional
features such as viewpoint and gaze direction. It remains to be
determined whether the degree of invariance and selectivity to
other visual properties align with the posterior—anterior gradient
that we have suggested.
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